Cell Phones For Elephants Transforms Conservation #NatureAndTechnology

NewImage

Technology is transforming conservation efforts. Tracking collars on elephants give warning to wildlife rangers when they travel too closes to highways. by Jon Hoekstra via foreignaffairs

Conservation is for the first time beginning to operate at the pace and on the scale necessary to keep up with, and even get ahead of, the planet’s most intractable environmental challenges. New technologies have given conservationists abilities that would have seemed like super powers just a few years ago. We can now monitor entire ecosystems — think of the Amazon rainforest — in nearly real time, using remote sensors to map their three-dimensional structures; satellite communications to follow elusive creatures, such as the jaguar and the puma; and smartphones to report illegal logging.

Such innovations are revolutionizing conservation in two key ways: first, by revealing the state of the world in unprecedented detail and, second, by making available more data to more people in more places. Like most technologies, these carry serious, although manageable, risks: in the hands of poachers, location-tracking devices could prove devastating to the endangered animals they hunt. Yet on balance, technological innovation gives new hope for averting the planet’s environmental collapse and reversing its accelerating rates of habitat loss, animal extinction, and climate change.

CELL PHONES FOR ELEPHANTS

In 2009, I visited the Lewa Wildlife Conservancy, in northern Kenya. A cattle ranch turned rhinoceros and elephant preserve, Lewa has become a model for African conservation, demonstrating how the tourism that wildlife attracts can benefit neighboring communities, providing them with employment and business opportunities. When I arrived at camp, I was surprised — and a little dismayed — to discover that my iPhone displayed five full service bars. So much for a remote wilderness experience, I thought. But those bars make Lewa’s groundbreaking work possible.

Since the mid-1970s, people have been consuming more resources than the planet’s natural capital can replenish.
More than a decade earlier, Iain Douglas-Hamilton, who founded the organization Save the Elephants, had pioneered the use of GPS and satellite communications to study the movements of elephants. At Lewa, Douglas-Hamilton outfitted elephants with tracking collars that connect to the Safaricom mobile network as easily as my cell phone did. These connections allow Lewa’s researchers to effectively call the tracking collars of the conservancy’s elephants and download their location data on demand, all the while plotting their migration between Lewa and the forests flanking Mount Kenya.

Today, Lewa uses the collars for more than research, piloting a program to reduce human-elephant conflict that results when elephants raid crops and to provide safer passage for elephants when they move through agricultural and other settled areas. Using accumulated data on elephant migration routes, the conservancy identified and protected ideal migration corridors. It even constructed a highway underpass to reduce the risk of elephants colliding with cars. Lewa also straps tracking collars on problem elephants with a history of raiding crops. If one of the elephants approaches a farm or village, its collar sends a text message to wildlife rangers, who can then quickly locate the animal and move it away in order to prevent any damage. True to their reputation for intelligence, the elephants quickly learn to mind such virtual fences and keep clear of farms.

The Lewa project shows how a relatively simple, low-cost tracking device can transform wildlife conservation. Using data from such devices, conservationists can shape protected areas around predictable migratory patterns — avoiding needless, often fatal confrontations between endangered species and human civilization. For example, Magellanic penguins that forage along the coast of Argentina have long been vulnerable to running into oil when they swim through shipping lanes. Once covered in oil, most penguins struggle to maintain their body temperature and die of hypothermia, and the survivors suffer from health and reproductive problems. In the mid-1990s, P. Dee Boersma, one of the world’s foremost authorities on penguin conservation, discovered that Argentina’s oil pollution was killing as many as 40,000 penguins each year. She used GPS tracking devices, at a time when the technology was on the cutting edge and costly, to document where the birds were foraging. She then worked with Argentinian authorities to move the shipping lanes further offshore, dramatically reducing a mortality rate that could have easily led to the penguins’ extinction.

Tracking collars such as those used on Lewa’s elephants or the Magellanic penguins can cost as much as $5,000 each. But Eric Dinerstein, a leading scientist at World Wildlife Fund, has collaborated with engineers at a cell-phone company to make a GPS tracking device that can be manufactured for less than $300. The use of stronger and smaller components has also made it possible to tag and track a wider variety of species, from jaguars in dense jungle to albatross soaring over the open ocean.

Read more


Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.