NXP goes after 8-bit with ARM Cortex M0+

I’ve been using NXP’s LPC chips forever in every available core (ARM7, ARM9, ARM Cortex M0/3/4), but their announcement today of their first Cortex M0+ based chips … the smallest, most power efficient core ARM has produced so far … actually surprised me.  They’re positioning this are a direct threat to the large, stable 8-bit market … which is a familiar marketing message, but they may have got it right this time.  DIP8 and TSSOP packages (easy to hand assemble) and $0.39 for a modern, efficient,  32-bit core with a huge tool and engineering ecosystem around it.  Them’s fightin’ words for sure.  Curious to see how this works out and if it pushes 8-bit to a smaller corner of the market, or if that segment is just never going to budge from their established habits.  Fun time to be an engineer, anyway!  You can read the details of the chips here.  But seriously.  $0.39.  Crazy talk, I say!


Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



7 Comments

  1. I just bought some in dip form and they weren’t .39 cents. Will something that cheap come with a warranty?

    Unfortunately, they won’t gain mainstream acceptance unless there is a teacher and a forum like this to promote them.

  2. Chuckz …I don’t know where you bought them from since they won’t be out for several months. 🙂 I suspect you bought an LPC1114 in DIP package … it’s a nice chip as well, but not the same core. The LPC1114 is M0 … these LPC800 chips are M0+.

  3. What’s the Linux toolchain like? Anyone have any experience?

  4. GCC has excellent support for ARM — better than many other competitive embedded architectures in my opinion since it’s one of the most widely used and best understood.

    There are a number of pre-compiled toolchains for Linux, OSX and Windows. I tend to use Yagarto on Windows and OSX, but ARM started publishing their own toolchains as well for GCC with all three platforms.

    If you can write a makefile, though, Linux support is no problem.

  5. I’m browsing through the LPC81XM datasheet and came across the part on the internal comparator. It claims to have an integrated "32-stage voltage ladder" which I thought might be a 32-stage R-2R resistor ladder which would mean a 32-bit analog-to-digital capability. Alas, I think it ends up offering functional compatibility with a 5-bit ADC (e.g. 32 values).

    I think this is one thing that is missing from NXP’s offering: ADC capability. In some ways, it’s reasonable to expect a designer to prefer a parametrically-selected I2C ADC for jeir specific application, but I find it immensely convenient to have an ADC peripheral on-board for simple things like reading a temperature with a PTC resistor or getting input through a potentiometer.

    As such, I’ll likely stick with Microchip’s 8-pin PIC’s for the time being. (I happened to start with the PIC chips and am a hopeless romantic for the underdog [versus Atmel’s AT-series, popularized in the Arduino]).

  6. It appears you can order the LPC812 on a NXP LPC800-Xpresso from Mouser. Well, pre-order.

  7. I wonder if there will ever be an Arduino core written for this. I am really into cheap – and simple. When I want to blink a few LEDs I don’t want to spend a week or two learning a new “tool chain”.

    Just my .02

Sorry, the comment form is closed at this time.